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Abstract

In the theory of general temperature modulated differential scanning calorimetry (GTMDSC), the modulated temperature of
furnace accords with a random cyclically modulated rule and even a random non-cyclic rule. In this paper, the temperature
variation rule of platelike sample in GTMDSC has been drawn with strict mathematical derivation. The obtained analytical
result reveals the total variation rule of the platelike sample from its initial equilibrium state to its steady state. With this
temperature variation rule, the variation rules of both reversible and irreversible heat flows, temperature lag, internal energy
and effective specific heat of the platelike sample have been derived and studied as well. Sinusoidal rule of modulated
temperature is only a very special example of general cyclic modulated rules. If the thermal conductivity of the sample is so
great that the temperature gradients within the sample can be neglected, in this case the temperature variation rule derived
from the fundamental equation of the temperature distribution of GTMDSC is the same as the current TMDSC theories. If the
modulated part in temperature equals 0, it reverts to the conventional DSC situation, so all the results in the GTMDSC model
derived in this article are automatically suitable for the conventional DSC situation and current TMDSC theories.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since Reading invented the TMDSC [1,2], the appa-
ratus of TMDSC has been commercialized successf-
ully by TA instruments. Many apparatus companies
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developed their own TMDSC apparatus with various
modulated rules, such as square wave, triangle wave and
other sawtooth waves, etc. The non-linear heating rate
in TMDSC causes many difficulties in the handling of
data [3-14]. In this paper, we will develop a general
temperature modulated differential scanning calorime-
try (GTMDSC) theory, which can be applied to any
TMDSC apparatus for data handling.

Just as in the conventional DSC, if the temperature
gradients within the sample are omitted, the measur-
ing errors in TMDSC will occur unavoidably, which
are sometimes rather large in some case [15]. There
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are some TMDSC theories, in which the temperature-
modulating modes are random cyclically modulated
rules, such as sawtooth modulation [16,17]. But the
temperature gradients within the sample are omitted in
all these theories, so the approximate extents are rather
large. Although there are some thermal analysis the-
ories dealing with conventional DSC [18] and
TMDSC [19,20] in which the temperature gradients
in the sample are considered, there are also some
obvious approximations in these theories. To mini-
mize the measuring errors, and to explain the physical
meanings of each eigen point and each eigen curve
correctly, it is necessary to develop a GTMDSC theory
in which the temperature gradients within the sample
and random modulation of furnace temperature are
considered.

For the simplicity, in this paper we assume that the
pan’s thermal resistor are so small that can be
neglected. This assumption will not influence the
universality of our following theory.

To enhance the measuring precision and decrease
the measuring error caused by the temperature gra-
dients within the sample, the sample is generally made
in the platelike form and the quantity of sample is as
small as possible within the sensitivity of the apparatus
if the TMDSC apparatus is ideal. So the real sample
can be taken as a plate, and the boundary effect caused
by the finite sample size can be rationally omitted.

It must be pointed here that in the real TMDSC
apparatus there are additional heat conducting paths
between the measuring system and the sample pan
[21,22]. So if the quantity of sample is too small, the
measuring precision of current TMDSC apparatus will
decrease. To enhance the measuring precision, it is
necessary to calibrate the apparatus influence. In this
article, we will focus on the theory of ideal heat-flux
type TMDSC. The further theory of GTMDSC will be
proposed later, in which the apparatus influence will
be calibrated.

2. Mathematical derivation of temperature
variation rule of platelike sample in GTMDSC
model

Because the sample shape studied in GTMDSC is
flat, it can be taken as a plate. For a platelike sample,
we only need to study the temperature distribution in

the plate depth direction. In this condition, there is a
thermal transference equation
OT(x,1) & T(x,1)

=a

o Ox? M

where T(x, f) is the sample temperature at the depth x
and at the time ¢, a* = k / pcp, K the thermal conduc-
tivity of the sample at temperature 7, p the mass
density of sample at temperature 7, c, the specific
heat of sample at temperature 7. Here, for simplicity,
the value of «, p and ¢, are assumed as constants in the
studied temperature interval.

The sample can be taken as a total depth 2/ with two
surfaces exposed to the heating surrounding, or
equivalently a total depth [ with one adiabatic surface
and another surface exposed to the heating surround-
ing, so we get boundary condition

x OT
(“m)

where K is the Newton’s law constant, and where

or
0 Ox

=0 2)

I

Ts = To + gt + Tmodulated (t) @)
+oo =

TModulated(Z) = ZA’” sin maot + ZBm cos maot
m=1 m=0

“

where T is the program-controlled furnace tempera-
ture in GTMDSC model, Ty the initial temperature of
furnace, g the linear heating rate of furnace, wy is the
basic angular frequency, other modulated angular
frequencies are 2wq, 3wy, 4wy, etc. which are, respec-
tively, called double frequency, triple frequency, and
fourfold frequency, etc. A,, and B,, are modulated
amplitudes, respectively, corresponding to sine and
cosine functions of various modulated angular fre-
quencies. From the expression of Tyodulated(?) it can be
found clearly that any cyclic function can be taken as a
linear overlap of sine and cosine functions of various
modulated angular frequencies. Assume Tnjoqutated(?)
is a cyclic function in which the interval from —p/2 to
p/2 is a modulation period, the radical angular fre-
quency g is 2n/p. Each coefficient in Eq. (4) can be
decided as follows

o n/wo .
TModulated(T) sin mmyt dt (4A)
—7/wo
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n/wo
0)
By=73 Titodutatea(7) (4B)
n —n/wy
wO n/wa
B, = — TModulated (T) cOs mwgtdr, (m #0)
T 77‘[/(1)()
(40)
Sample’s initial condition is
T(x7 0) =To (5)

that is at the initial time, whole sample’s temperature
is To.

Define :

+00
T(x,t) =To+qt + ZA”‘ sin magt

m=1

+0o0
+ ZBm cos mwot + A(x, t) (6)

m=0
where A(x, f) is a correction function. Only in the
extremely ideal situation that the thermal conductivity
of the sample is infinite and the Newton’s law constant
is sufficiently large, the correction function A(x, f) is
equal to 0. In the general situation, A(x, f) is not equal
to 0, so the Eq. (1) can be changed into the following

form:
04(x,1) —d GZA(X’ 0 _ —q — +meco A, COS mmot

m=1

+00
+ meoBm sinmawot  (7)
m=1

The boundary condition (2) becomes

K 0A oA
<“ B Kax)

S0
and the initial condition (5) becomes

A(x,0) = 0 ©)

=0 ®)
!

By using the method of impulse theorem and defining
A(x,1) = [lv(x,#;7) dt, Eq. (7) becomes

wx, 1) L Pv(x,1)
T a e 0 (10)
The boundary condition (8) becomes
K Ov v
B | = 11
(v K 8x> o Ox|, 0 b

and the initial condition (9) becomes

+00
vix,t=14+0)=—q— ZmAmwo COS mwoT

m=1

+00
+ ZmBmwO sin mmgt (12)

m=1

By using variable separation method and defining
v(x,t) = U()X(x), we have

1dU 2 dX
Udt X dx?
The left side of Eq. (13) is the function of time ¢, but
the right side is the function of place x. Because the
equation is valid, both side of the equation must be
equal to a constant. Defining this constant —4%a?, we
get

13)

1dU @ d’X s 5
Uda " xae~ He (14

In Eq. (14), the value of A must have a positive real
value. The reason is as follows:

X(x) = Ae™™ 4 Be

To satisfy the boundary condition shown in Eq. (11),
the parameters A and B must be equal to O at the same
time. So the assumption A being an imaginary number
is wrong.

From these, the obtained solutions are
U=U(0)e * " (15)
X(x) = Asin Ax + Bcos /x (16)
From a recent boundary condition (X — (x/K)
(0X/0x))|, = 0, we can obtain

K
B=—A/ 17
< (17

From another boundary condition (dX(x)/dx)|, =0,
we get

Alcos Al — BAsinAl =0 (18)

Combine Eq. (17) with Eq. (18), we get
K
An :;ctg/lnl, n=0,1,2,... (19)

that is to satisfy the boundary conditions, 4 must be the
roots of Eq. (19).
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So we have a general solution

v(x,t;7) ZC

0-7) L gin A,x 4 -2t </ COS ApyX
n K n

(20)

From initial condition

+00 }

ZC" (7) |sin A,x + ——cos A,x
n=0 K

+00 +00
=—q— E mA,,wq cos mmoT + E mB,,wq sin mwot

m=1 m=1
we get
2K?
(K2 + 1272 4 kK)

Cy(tr) =—

+00
X (qu E mA,,, (o COS mwyT

+o00
- ZmBmwo sin mwm) 1)
m=1

where we have used orthogonal relation of the intrinsic
function

l
2
r)/onxn(xm dx

+00
= - (q + ZmAmwo COS mmoT

m=1

+00 1
_ ZmBmwO sinmwm)/X,,(x)dx (22)
0

m=1

[P as= A K

o 2K2 ’
! 1
X, (x) dx = —
/0 (v =

So we have

(23)

+00
v(x,t;1)=— (q + ZmAmwo COS MwoT

m=1

—+00
— E mB,,wg sinmwm)

m=1
n=0 )Vn (K2l+lK2)vi +KK)

ef).ﬁaz(tfr)Xn (x)

(24)

Thus, we can obtain the correction function

t +00
A(x,t) = / v(x,t;7)dt = ZA,,(A,w,x, f)
0

n=0
D P
= ) (K21 + IK202 4 kK)

X+ —— o
sin A,,x coS Apx
K
q
x {—A%(

)
x [ (

—/1 a z mAm(U()

- )+ Z 22t 2

A, 4% + m

cos maot — e N
mBmwO

+ mayg Sin mwot + E T 5

1 at +mPoj

X [mawo(cos mwot — et )

—J2d sinmwot]}, (0<x<It>0)

(25)
A, is defined as follows:
An(A, 0, x,t)
2K? . Kin .
= — 5 sin A,x + ——cos A, x
In(K2L+ IK22; + KK) K
q 7) a l mAmwO
X 9 —— )+
{ ),lzlaz (1= mz i4a4 +m?w
x [22a*(cos mayt — e’ ") + may sin mwot]
+00

mB [ON) 2.2
+ E %[mwo(cos maot — e ")
A,at + m?wj

— J2d*sin mwot]}, 0<x<Lt>0) (26)

where A, is the nth temperature distribution correction
item of the sample.
Finally, we have

+00
T(x,t) =To+ qt + ZAm sin mwot

m=1

+00
+ ZB,,, cos mapt + A(x, 1)

m=0

+00
=T+ qt+ ZA,,, sin mawgt

m=1
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+00
+ ZBm COS mmot
m=0
K2

- Z A (K21 + le;u + kK)

x [ sin A +i" yi
SIN A, X + —— COS A, X
K

mAma)o

q +00
% _ 1 (1 _ 7/L a T) Jr . mv
{ 2a? ihat + mra}

m=1

x [22a*(cos maot — e*ﬁ“z’) + mag sin maot]

mBmwO
+
Z )4a4 +mlw

— iﬁaz sin mwot]} 27

[mwo(cos mawot — e*ﬁ”z’)

+00
T(x,t) =To+ gt + ZAm sin mwot

m=1

“+00
+ E B,, cos mawyt

m 0
K2

B Z (K21 + l;c2)2 + kK)

nO

X (sin AnX + % cos i,lx) (27A)

where o, ,, is defined as
2 2
/na

4.4 22
\/ Apat + mPwg

and B, ,, is defined as
mw

[ 94 4 2,2
A, 0" + m-y

Egs. (27) and (27A) is the temperature distribution
rule within the platelike sample in GTMDSC model,
and this is the fundamental and most important equa-
tion of our GTMDSC theory.

If the time is long enough, the item e ~/4°t becomes
so small that it can be neglected. In this case the
sample is in the steady state, and the Egs. (27) and
(27A) can be rewritten as

Oy = arcsin (28)

Bym = arccos (28A)

+00
T® (x,t) =To + gt + ZA,,, sin mwyt
m=1

+00
+ ZB,,, Ccos mmwot

m=0

+o0 2K2
- ; In(K2L 4 1272 + kK)

. K}L R
X <sm AnX + ?" cos A,,x)

X {—/12(] 5 (1
na m=1
X [iiaz cos mwot + mwy sin mayt|

—/lal mAm(,O()
- +Z At 2
A, a7 +m w(

+ Jff mBmCl)o
4 4 2.2
= Apat + mrayg

X [mwg cos mwot — iﬁaz sin maot| } (27B)

70 (x, 1)

+00
=To+ gt + ZA,,, sin mmot

m=1
+00 2[(2
;;\.n(Kzl + K202 + KK)

(i i)

+00
2 mA,,®
: {—fmeﬂﬁwz—# :
I m=1 /lia“ + mw}
R mBmwo

x sin(mwot + o ) + Z—
m=1 \/ Jha* + mrwd
x cos(mwot + ﬁn,m)}, 0<x<Lt>0)

(27C)

From Egs. (27) and (27A), it can be known that the
temperature distribution function 7(x, ) is related to
the experimental conditions, such as heating rate of
surrounding, Newton’s law constant of the sample
box, sample’s initial temperature, its specific heat, its
thermal conductivity and other factors. If wg and A,
are not 0 but all other modulated amplitudes are O, it
reverts to the situation that the modulated mode is
sinusoidal, i.e. common TMDSC [23]. When all
modulated amplitudes equal 0, it reverts to the
conventional DSC situation, so the temperature dis-
tribution rule within the sample in the GTMDSC
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model derived in this article is automatically suitable
for the conventional DSC situation and common
TMDSC.

The temperature gradients within the sample can be
derived from the basic Egs. (27) and (27A)

ZKZZ + le -+ kK

X (cos AnX — K—)m sin l,,x)
K

20
X{ q (l—e Anat)
’\2
A,a
+Zoo mAma)O
4
= at + mra}

x [A2a*(cos mat — e’irzf"zl)

mBm(U()
+ mao Sln m(U()t —+ E W
—1 4, 4" + m-yg

% [mao(cos mawot — e ')

— 22a” sin may] } (29)

dT(x, ) f 2K?
S K2+ k20 4 kK

Kin . )
——sin A,x
K

| =
n

La
+00

X (cos Anx —

mAma)o

Z: 4 4 2.2
m=1 4/ 7 a* + m>wg

22 2
2a—/Anat

f‘}:mAmwoiﬁa e
B 4 4 2.2
Ipat + m2og

+ sin(mawot + o )

&2 mBmCU()

m=1\/ 2a* + m2}
ZB 2 —Arat

wie
INTEEnC L (0<x< 11> 0
mz;}f;a“—&—mzw%} O=sx< )

(29A)

+ cos(mwot + B,,,)

3. Derivation of variation rules of temperature
lag, heat flows, internal energy and effective
specific heat of platelike sample

The further discussion of Egs. (27) and (27B) will
give rise to many interesting subjects, such as the
variation rules of sample’s internal energy, the energy
flow within the sample, the temperature lag, the rever-
sible heat flow and the irreversible heat flow within the
sample, etc. so we will discuss them in the following.

3.1. Temperature lag rule of the platelike sample
First of all, we study the temperature lag 67 of the

sample surface temperature with the variation of
surrounding temperature. 67 is defined as follows:

oT =T(0,t) — Ts(t) = T(0,1) — Ty — gt — Ar, sinwt
(30)

According to Eq. (27), Eq. (30) has the form

OT = T(0,1) Zhnfn (31)

where some definitions are made in the following
2Kk
K21+ 1272 + kK

; a t nlAmU)o
)4614 + m2

(32)

n =

_ 4
hi0)= 20

).nu t)

x [22a*(cos mat — e~ ~+ may sin ma)ot]

+00

mB,,w 2.2
+ Z 47'"02 [mawo(cos magt — e ")
m=1 na4 + msz
— 22a® sinmayt] (33)

Eq. (31) is the generalized temperature lag rule of the
platelike sample in GTMDSC.

Under the steady state condition, i.e. the term et
can be omitted, we have

R mAma)O

©) (s T+
80 ,1’21a2 Z)4a4+mz

+ mawy sin mwyt]|
mBmwO

+
Z /14614 + m2

X [mwg cos mwot — iiaz sin maot]

[22a* cos maot

(33A)
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Thus, under the steady state condition, there is tem-
perature lag rule of the platelike sample

+00
TV = = " (1) (34A)
n=0

3.2. Variation rule of reversible and irreversible heat
flows in the platelike sample

Under the general state condition, the ideal rever-
sible Newton’s heat flow HF,., which is flowing into
the sample through the boundary of sample within a
unit area and in a unit time is

HF,y = 9 _ ko1 = thnf (1) (35)
rev — d[ - - g n

where Q; is the heat energy absorbed by the sample.
Irreversible heat flow is

HFn.r. = <HF> - HFrev (36)

where (HF) is the standard heat flow detected practi-
cally with the experiment.

Under the steady state condition, the ideal rever-
sible Newton’s heat flow HF) which is flowing into
the sample through the boundary of sample within a

unit area and in a unit time is

o _ oY 6 — 1N )
HEQ), == —=—KoT =KY hfO(1)  (35A)

Irreversible heat flow is

HE!) = (HFY) — HF®) (36A)

rev

where (HF®) is the standard heat flow detected
practically in the steady state in the experiment.

3.3. Variation rule of internal energy of platelike
sample

In the general situation, there is an equation about
internal energy of sample at time ¢ in a unit volume

!
E(r) = plp/OT(x,t)dx

+00
E(1) = pc, KTO + gt + ZAm sin mwot

m=1

+00
+ ZBm cos mw0t>

m=0

+oo 2K2
— L (t
”Z; Jol(K2 + k227 + KK)f ( )]

+00
E(t) = pc, [(TO + gt + ZAm sin mawot

+00 +00 K
+ ZBm cos mw0t> Z
A

m=0 n=0

Ay )} (37)

In the steady state situation, there is an equation
about internal energy of sample at time ¢ in a unit
volume

I

EO@) =22 [ 700 (x, 1) dx

L Jo

+00
Cp KTO + gt + ZAm sin magt
K
ZB cos mawot Z 2 afy (1)

m=

(37A)

3.4. Variation rule of effective specific heat of
platelike sample

Because of the thermal resistance of the sample and
the non-linear heating or cooling rate in the GTMDSC
model, there is a sample’s temperature lag effect that
takes place with the variation of surrounding environ-
mental temperature. Because the temperature mea-
sured in the real GTMDSC experiment is the
temperature of the sample’s outer surface, the mea-
sured specific heat in GTMDSC is not as the same as
the real specific heat of the sample. We use equivalent
specific heat or effective specific heat to obtain the
exact value of the measured sample’s specific heat in
GTMDSC.

The definition of effective specific heat is

1 dE(2)

L= 38
Ceff pdT(OJ‘) ( )
Eq. (38) can also be written as

LdE(r) dt

= 2 39

et =5 dr dr(0, 1) (39)
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In the general situation, from Eq. (37), there is a
following relation:

dE(?) +§ o (A, cos mwot — B, sin mwot)
—= =pc m m COS mwot—B,, sinm
dr pCp|q 2 0 0 0
+00
K
— —h,g,(t 40
;K e )} (40)
where g,(?) is defined as follows:
dfu(2)
W) = ———
gnlt) ==
=ge Aat+z mAm(,U() [/12 2(}2 2 7/15u2t
/14a4 + m?o,
— mwy sin mwot) + mzw(z) cos mawyt]
o 2Bm(’o() [}2 2 7/L at

4. 2 2
£ Ina* + m>w}

— mwyg Sin mwot — ),,Zlaz cos mawot] @1
Because there is a relation

d7(0, ¢ <X
% =q+ meo (A, cos mwot — By, sin mwot)

m=1

+00
- Zhngn(t) (42)
n=0

from Eq. (39), there is a relation as follows:

X mPA,w?
4 4 2.2
o P LT

12 2

X [mwg cos mwot — 2,a” sin mwot

i’i m* B,
= )tat + m2o}
X [mawg sin maot + }t,zlaz cos mayt] (41A)

The expression in Eq. (43) is the effective specific heat
of sample in GTMDSC. With this expression, the
exact value of real specific heat of sample can be
obtained from the effective specific heat measured in
GTMDSC. From the expression of effective specific
heat of sample, it is obvious that the effective specific
heat of sample can vary with the variation of the
modulated mode.

Now, let us reconsider an imaginary situation in
which the thermal conductivity of the sample is infi-
nite, i.e. kK — +oo. In this ultimate situation, the
temperature gradients within the sample can be
neglected. From the Eqs. (32) and (41) we know when
K tends to infinite, the value of 4, tends to O and the
value of g,(¢r) is a finite quantity, so we can easily
obtain the relation cgr = ¢, from Eq. (43). Only in the
ultimate situation that the sample’s thermal conduc-
tivity is so high that the temperature gradients within
the sample can be neglected, the value of sample’s
effective specific heat in GTMDSC equals to that of
real specific heat.

g+ Z+°°1mw0 (A, cos mmwot — By, sinmawygt) —

+o00 2
ne0(K /17, )hngn(t) (43)

Ceff (l‘) =Cp

Under steady state condition, there is a similar expres-
sion of sample’s effective specific heat

g+ > mawy(A,, cos mwot — By, sinmayt) —

POMRT A

From the above derivation, it is not difficult to know
that if the sample’s thermal conductivity is not so high

q + ]mwo (A, cos mwot — By, sinmagt) —

(K /172 gl (1)

q + Yo max (A cos mwot — By sin meot) —

where the used definition gi,s)(t) is as follows:

a5 (1)

oo (43A)
Z hngn (1)

that the temperature gradients within the sample can-
not be neglected. In this general situation, the tem-
perature gradients within the sample must be
considered.
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4. Discussion on the GTMDSC theory

To verify the generality of GTMDSC theory, now
we study following very special examples.

Example 1. Square wave modulation
Assume there is a square wave frequency diagram
of the furnace temperature

T (l‘) . { +T4 (Zklo, (2k + l)l()),
Modulated - —TA ((Zk - 1)[0, Zkto),
wherek = 0,£+1,£2,£3,...

In the whole time from —oo to +00, the square wave is
an odd cyclic function of time ¢ as shown in Fig. 1. So
it can be evolved into Fourier series, in which each
coefficient B,, is 0.

The real time of research or study is ¢ > 0, above
treatment will not influence the validity of the final
result.

From Fig. 1, it can be known that 21, is a period, so

_2n =

)= —=—
2t 1y

The modulation of temperature can be evolved into

—+00
Tniodutated (1) = ZAm sin mawot
m=1

TModu lated (t) ‘

I

where the efficient A,, is decided in the following:

20 7/ wo .
Ay = — TModulated (T) sin mawot dt
0
2w0T4 n/wo
= —/ sin mwqt dt
T 0
2Ty /wo 2Ty m
= ———|cos mw, =——(-1)" -1
A feosmantly " = = A [(=1)" — 1]
0 (miseven)
= 4T,

A .
— dd
o (misodd)

The Fourier series of square wave as shown in Fig. 1 is
as follows:

TModulated (t )

4T, 1 1
= A (sin wot + =sin 3wot + =sin Swot
T 3 5

1
+§sin7w0t+...>

Fig. 2 shows composite waves of the Fourier series,
curves of tiny lines represent the waves, respectively,
composed by first item, the first two series items, . . .,
the first five series items, and the curve of bold line
represents the wave composed by the first six series
items. From Fig. 2 we know that with the increase of
series item, the composed wave gradually approaches
the real square wave.

-3t0 —2t0 - tg 0

-Ts

[ 2 31,

Fig. 1. Square wave modulation.
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Fig. 2. Waves of the Fourier series composed by front series items.

The frequency diagram of square wave is composed
of basic harmonic wave and odd harmonic waves. The
amplitudes of harmonic waves are inversely propor-
tional to their ranks, so the convergency speed of this
series is very slow. In the real usage, sufficient items
should be remained to ensure the composite wave is
not distorted.

Substituting coefficients A,, and B,, into corre-
sponding expressions, the temperature variation rule
and the variation rules of other physical parameters of
platelike sample can be obtained.

Example 2. Sawtooth (triangle) wave modulation
In a period [—tg, fo], Tmodulated(?) Can be expressed
Tniodutated (1) = Et[, &> 0
In the whole time from —oo to +00, the sawtooth wave
is an even cyclic function of time ¢ as shown in Fig. 3.
So it can be evolved into Fourier series, in which each
coefficient A,, is 0. The real time of research or study is
t > 0, above treatment will not influence the validity
of the final result.
From Fig. 3, it can be known that 21, is a period, so

+00
TModulatedO) = ZBm COS maoyt
m=0

S
Tt 72(1)0

By
o Jo

B}'H

o (/o)
_ / Tmodulated (T) cos mmwyt dt
T J ~(n/wo)

28wy [ (™)
= / T cos mwgt dt
T Jo

[cos mwot + maot sin mar) |

m2won
2¢
T mlo
[\

(=" 1]

0 (misanon-zero even)

4
_ 25 (misaodd2k + 1,k > 0)
m=om

So the Fourier series of sawtooth wave shown in Fig. 3
is as follows:

né 4F X 1

200 wom = (2k +1)°

Tnviodulated ()

x cos(2k + 1)wot
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TM{)dulated (t) A
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T
-4, -2t 0

: , . — -
2t a1,

~—

Fig. 3. Sawtooth (triangle) wave modulation.

Fig. 4 shows composite waves of the above Fourier
series, curves of tiny lines represent the waves com-
posed by first item, the first two items, . . ., the first five
items, and the curve of bold line represents the wave
composed by the first six series items. From Fig. 4 we
know that with the increase of series items, the

composed wave gradually approaches the real saw-
tooth wave.

The shape of the sawtooth wave is much similar to
that of cosine function. The amplitudes of harmonic
waves are inversely proportional to the square of their
ranks, so the convergence speed of this series is very

Ety|

Ty
Tus

r‘"ll

Fig. 4. Sawtooth waves of the Fourier series composed by front series items.
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620 40 60 80 106 120 140
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Fig. 5. The distribution of front six roots of Eq. (19).
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E

0 20 30
t

Fig. 6. The variation rule of furnace temperature.
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Fig. 7. Variation rule of Oth correction item and its difference to
1th item.

fast. In the real usage, the front six items are sufficient
to ensure that the composite wave is not distorted.

Substituting coefficients A,, and B,, into corre-
sponding expressions, the temperature variation rule
and the variation rules of other physical parameters of
platelike sample can be obtained.

Assume that in the studied temperature interval the
sample’s thermal conductivity x is 1, its mass density
p is 1, its specific heat ¢, is 1.5, so we get a’* =
(r/pcy) = 0.6667. We also assume that samples depth
lis 0.1.

Assume g1(1) = (K/x)cos(4l), h1(1) = Asin(Al),
in the same figure we, respectively, draw the lines
g1(2) and h1(4A) for /, shown in Fig. 5. The values of 1
corresponding to the intersecting points are the roots
of Eq. (19). So we can get the roots: 4y = 8.6033357,
A1=34.25618387, 1,=64.3729811, 13=95.29334263,
Aq = 126.45287025, 15 = 157.71284669, etc.

Assume the Newton’s law constant K is 10, & is 1,
and the modulated basic frequency wg is 1, which
means the semi-period 7, is 7. We can get a relation
between the temperature of furnace 7 and the time ¢ as
shown in Fig. 6.

Fig. 7 shows the variation rule of Oth correction
item and its difference to 1th correction item with
time ¢. From Fig. 7 we can know that 4, is the
dominant item, the sum of other items is just only
the 2% of the value of 4. For the simplicity, in this
special example we only need to consider the influence

5

3
I:Hrfacc
2

0 5 10 15 20
t

Fig. 8. Variation rule of sample’s surface temperature lag.

of the 4, and the error caused by this approximation
will be less than 2%.

Thus, using Eq. (31) we can obtain the variation rule
of sample’s surface temperature lag, as shown in Fig. 8.

Contrasting Figs. 6 and 8, it seems that the sample’s
surface temperature varies synchronously with the
variation of furnace temperature. But after detailed
study, we still can find differences. Drawing the
variation of furnace temperature and sample’s surface
temperature in the same figure and amplifying the
local part, shown in Fig. 9, it can be observed that there
is an obvious temperature lag of sample’s surface. The
main cause of this temperature lag is the limited value
of sample’s thermal conductivity. If the thermal con-
ductivity of sample is infinite and the pan’s Newton’s
law constant is sufficient large, form Eq. (25) it can be
known the correction function is 0, so the temperature
of sample is equal to that of furnace, i.e. there is no
temperature lag phenomenon.

Increasing the value of sample’s thermal conduc-
tivity and remaining other physical quantities con-
stant, in Fig. 10 we can find that the sample’s surface
temperature lag can be diminished obviously. The
number denoted in the brackets in Fig. 10 is cor-
responding to sample’s thermal conductivity.

Similarly, increasing the value of the pan’s New-
ton’s law constant and remaining other physical quan-
tities constant, in Fig. 11 we can find that the sample’s
surface temperature lag can also be diminished
obviously. The number denoted in the brackets in
Figs. 11 and 12 is corresponding to pan’s Newton’s
law constant.
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Fig. 9. Variation of sample’s surface temperature and furnace temperature.

5. GTMDSC theory for any modulated functions
of temperature

At above, we have studied the GTMDSC theory
for any random cyclically modulated function of

temperature. The obtained theory is rather general.
But there is a more general situation, in which the
modulated function of temperature is random and
may be non-cyclic. This is a more challenging pro-
ject, to which we often face in the real thermal

0.02
0.015
Ts - Tsurface (1)
Ts = Tourrace(5)
0.01
T - Tourtace(10)
T Tonrine(15)
0.005 -
5 ,/’, . PR
.»"‘ 7 . -
R 7 -
St
SR
fez*
0 0.1

0.2 0.3 04 0.5

t

Fig. 10. Relationship between the sample’s temperature lag and its thermal conductivity.
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Fig. 11. Relationship between the sample’s temperature lag and its pan’s Newton’s law constant.

analysis process. Because of lacking corresponding
theory, this difficult project has always been shunned.
For example, in the experimental process of traditional
DSC, the furnace temperature is controlled by pro-
gram. Theoretically, the furnace temperature should
rise with perfect linear rule. But, actually, to all the

Furnace Temperature / (°C)

DSC apparatus, the precision will not be so high.
Especially, in the initial time of heating process,
because of the thermal inertia of furnace, the heating
rate is not exactly the same. Sometime in the initial
heating stage, there is a fluctuation in heating rate,
which results in the obvious protuberance in the

t/ min

Fig. 12. Real heating rule of furnace temperature.
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initial curve of DSC diagram. The nicer the thermal
analysis apparatus, the smaller the protuberance.
Actually, almost no apparatus can totally eliminate
this protuberance. In the current DSC apparatus, this
protuberance phenomenon is still serious. Many
experienced thermal analyzers discard this protuber-
ance part of the thermal diagram and only use the
posterior part of diagram, which corresponds to
the stable heating rate. If someone want to detect
the physical properties at low temperature, to avoid
the disturbance of initial protuberance, he must cool
the sample to lower temperature which cause high
cost and inconvenience in real operation process. The
most serious result is that the discard of the initial
curve of thermal diagram will result in the loss of
important information, which is contained in the
initial curve.

Based on our previous study of GTMDSC theory,
through appropriate treatment, now we are totally
possible to develop a universal thermal theory, which
refers to the random temperature modulation, and to
obtain strict analytical expression of the temperature
variation rule of platelike sample.

Now, we deal with a representative example.

Without losing generality, assume the programmed
heating rate of furnace is 1 K/min.

The Fig. 13 shows the variation rule of furnace
temperature in a popular DSC experimental process in
the whole time interval, O to #,,,c. From this diagram

we know the variation rule of furnace temperature is
non-linear and non-cyclic.

We also can obtain the real heating rate of furnace
temperature (shown in Fig. 13) and non-linear mod-
ulation of furnace temperature (shown in Fig. 14).

In following we will make some technical treat-
ments on the non-linear modulation of furnace tem-
perature. At first, analytical continuation can be made
on the whole time axis, as shown in Fig. 15. From
Fig. 15, the non-linear modulation rule of furnace
temperature is only taken as part of a cyclic modula-
tion function in the whole time. In principle, if a part of
the cyclic modulation function is the same as the real
modulation rule of temperature, the various cyclic
modulation functions can be right. Figs. 15 and 16,
respectively, show two simplest cyclic functions, in
which only one period wave is depicted. In Fig. 15 it is
an odd cyclic function and in Fig. 16 it is an even
cyclic function.

After above technical treatment, for a former ran-
dom non-linear modulation of temperature, the whole
theory of random cyclically modulated temperature
also can be used. So we can obtain strict analytical
solution for any modulation of temperature. Thus, this
difficult problem of DSC can be solved satisfactorily.
The method described here is very important to the
calibration of DSC apparatus. Our GTMDSC theory
makes it possible from whole thermal diagram to
obtain useful information as much as possible.

2.0+
~ 154
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2
R B e e
~
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Fig. 13. Real heating rate of furnace temperature.
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Fig. 14. Non-linear modulation of furnace temperature.
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Fig. 15. Odd continuation of non-linear modulation of furnace temperature.
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Fig. 16. Even continuation of non-linear modulation of furnace temperature.
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6. Conclusion

The strict analytical temperature variation rule of
platelike sample in GTMDSC model derived here
reveals the total variation rule of the platelike sample
from its initial equilibrium state to its steady state. In
the GTMDSC theory, the modulated temperature of
furnace accords with a random cyclically modulated
rule and even a random non-cyclic rule. This theory is
more general than the current TMDSC theories. Both
current TMDSC theories and conventional DSC the-
ories are included in our theory. The variation rules of
some sample’s physical quantities can be derived from
this fundamental temperature variation rule, in which
much useful information such as sample’s thermal
conductivity and specific heat capacity, etc. is
included. The obtained results show that reversible
and irreversible heat flows, temperature lag, internal
energy and effective specific heat of the platelike
sample are functions of experimental conditions, such
as modulation mode of furnace temperature. So if we
use GTMDSC to obtain the characteristics of the
matter we must deal with the experimental data accord-
ing to corresponding physical rules. In the general
situation, the sample’s thermal conductivity is not great
enough, so the effects caused by temperature gradients
cannot be omitted. All the experimental data obtained
in the GTMDSC must be dealt with carefully with
appropriate calibration methods such as considering
the temperature gradients within the sample.

Although the analytical theory of GTMDSC here is
far more complex in form than the current TMDSC
theories, we can anticipate that our analytical theory of
GTMDSC is more precise and more general.
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